Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Trop Med Infect Dis ; 8(3)2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2250849

ABSTRACT

We conducted a retrospective study using a population of patients who were hospitalized at Dr. Juan Graham Casasus Hospital in Villahermosa (Tabasco, Mexico) and had a positive RT-PCR test for SARS-CoV-2 between June 2020 and January 2022. We analyzed all medical records, including demographic data, SARS-CoV-2 exposure history, underlying comorbidities, symptoms, signs at admission, laboratory findings during the hospital stay, outcome, and whole-genome sequencing data. Finally, the data were analyzed in different sub-groups according to distribution during waves of the COVID-19 pandemic regarding Mexican reports from June 2020 to January 2022. Of the 200 patients who tested positive via PCR for SARS-CoV-2, only 197 had samples that could be sequenced. Of the samples, 58.9% (n = 116) were males and 41.1% (n = 81) females, with a median age of 61.7 ± 17.0 years. Comparisons between the waves of the pandemic revealed there were significant differences in the fourth wave: the age of patients was higher (p = 0.002); comorbidities such as obesity were lower (p = 0.000), while CKD was higher (p = 0.011); and hospital stays were shorter (p = 0.003). The SARS-CoV-2 sequences revealed the presence of 11 clades in the study population. Overall, we found that adult patients admitted to a third-level Mexican hospital had a wide range of clinical presentations. The current study provides evidence for the simultaneous circulation of SARS-CoV-2 variants during the four pandemic waves.

2.
Pathogens ; 11(6)2022 May 30.
Article in English | MEDLINE | ID: covidwho-2225478

ABSTRACT

The performance and validity of the COVISTIXTM rapid antigen test for the detection of SARS-CoV-2 were evaluated in an unselected population. Additionally, we assessed the influence of the Omicron SARS-CoV-2 variant in the performance of this antigen rapid test. Swab samples were collected at two point-of-care facilities in Mexico City from individuals that were probable COVID-19 cases, as they were either symptomatic or asymptomatic persons at risk of infection due to close contact with SARS-CoV-2 positive cases. Detection of the Omicron SARS-CoV-2 variant was performed in 91 positive cases by Illumina sequencing. Specificity and sensitivity of the COVISTIXTM rapid antigen test was 96% (CI 95% 94-98) and 81% (CI 95% 76-85), respectively. The accuracy parameters were not affected in samples collected after 7 days of symptom onset, and it was possible to detect almost 65% of samples with a Ct-value between 30 and 34. The COVISTIXTM antigen rapid test is highly sensitive (93%; CI 95% 88-98) and specific (98%; CI 95% 97-99) for detecting Omicron SARS-CoV-2 variant carriers. The COVISTIXTM rapid antigen test is adequate for examining asymptomatic and symptomatic individuals, including those who have passed the peak of viral shedding, as well as carriers of the highly prevalent Omicron SARS-CoV-2 variant.

3.
Viruses ; 15(2)2023 01 28.
Article in English | MEDLINE | ID: covidwho-2216973

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) is the most transmissible ß-coronavirus in history, affecting all population groups. Immunocompromised patients, particularly cancer patients, have been highlighted as a reservoir to promote accumulation of viral mutations throughout persistent infection. CASE PRESENTATION: We aimed to describe the clinical course and SARS-CoV-2 mutation profile for 102 days in an immunocompromised patient with non-Hodgkin's lymphoma and COVID-19. We used RT-qPCR to quantify SARS-CoV-2 viral load over time and whole-virus genome sequencing to identify viral lineage and mutation profile. The patient presented with a persistent infection through 102 days while being treated with cytotoxic chemotherapy for non-Hodgkin's lymphoma and received targeted therapy for COVID-19 with remdesivir and hyperimmune plasma. All sequenced samples belonged to the BA.1.1 lineage. We detected nine amino acid substitutions in five viral genes (Nucleocapsid, ORF1a, ORF1b, ORF13a, and ORF9b), grouped in two clusters: the first cluster with amino acid substitutions only detected on days 39 and 87 of sample collection, and the second cluster with amino acid substitutions only detected on day 95 of sample collection. The Spike gene remained unchanged in all samples. Viral load was dynamic but consistent with the disease flares. CONCLUSIONS: This report shows that the multiple mutations that occur in an immunocompromised patient with persistent COVID-19 could provide information regarding viral evolution and emergence of new SARS-CoV-2 variants.


Subject(s)
COVID-19 , Lymphoma, Non-Hodgkin , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Virus Shedding , Persistent Infection , Lymphoma, Non-Hodgkin/complications , Lymphoma, Non-Hodgkin/drug therapy , Immunocompromised Host
4.
Int J Mol Sci ; 23(19)2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2043769

ABSTRACT

SARS-CoV-2 is a coronavirus family member that appeared in China in December 2019 and caused the disease called COVID-19, which was declared a pandemic in 2020 by the World Health Organization. In recent months, great efforts have been made in the field of basic and clinical research to understand the biology and infection processes of SARS-CoV-2. In particular, transcriptome analysis has contributed to generating new knowledge of the viral sequences and intracellular signaling pathways that regulate the infection and pathogenesis of SARS-CoV-2, generating new information about its biology. Furthermore, transcriptomics approaches including spatial transcriptomics, single-cell transcriptomics and direct RNA sequencing have been used for clinical applications in monitoring, detection, diagnosis, and treatment to generate new clinical predictive models for SARS-CoV-2. Consequently, RNA-based therapeutics and their relationship with SARS-CoV-2 have emerged as promising strategies to battle the SARS-CoV-2 pandemic with the assistance of novel approaches such as CRISPR-CAS, ASOs, and siRNA systems. Lastly, we discuss the importance of precision public health in the management of patients infected with SARS-CoV-2 and establish that the fusion of transcriptomics, RNA-based therapeutics, and precision public health will allow a linkage for developing health systems that facilitate the acquisition of relevant clinical strategies for rapid decision making to assist in the management and treatment of the SARS-CoV-2-infected population to combat this global public health problem.


Subject(s)
COVID-19 , COVID-19/genetics , COVID-19/therapy , Humans , Pandemics , RNA, Small Interfering , SARS-CoV-2/genetics , Transcriptome
5.
Sci Rep ; 12(1): 4759, 2022 03 19.
Article in English | MEDLINE | ID: covidwho-1751754

ABSTRACT

End-point RT-PCR is a suitable alternative diagnostic technique since it is cheaper than RT-qPCR tests and can be implemented on a massive scale in low- and middle-income countries. In this work, a bioinformatic approach to guide the design of PCR primers was developed, and an alternative diagnostic test based on end-point PCR was designed. End-point PCR primers were designed through conservation analysis based on kmer frequency in SARS-CoV-2 and human respiratory pathogen genomes. Highly conserved regions were identified for primer design, and the resulting PCR primers were used to amplify 871 nasopharyngeal human samples with a previous RT-qPCR based SARS-CoV-2 diagnosis. The diagnostic test showed high accuracy in identifying SARS-CoV-2-positive samples including B.1.1.7, P.1, B.1.427/B.1.429 and B.1.617.2/ AY samples with a detection limit of 7.2 viral copies/µL. In addition, this test could discern SARS-CoV-2 infection from other viral infections with COVID-19-like symptomatology. The designed end-point PCR diagnostic test to detect SARS-CoV-2 is a suitable alternative to RT-qPCR. Since the proposed bioinformatic approach can be easily applied in thousands of viral genomes and over highly divergent strains, it can be used as a PCR design tool as new SARS-CoV-2 variants emerge. Therefore, this end-point PCR test could be employed in epidemiological surveillance to detect new SARS-CoV-2 variants as they emerge and propagate.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
6.
Viruses ; 14(3)2022 03 06.
Article in English | MEDLINE | ID: covidwho-1732246

ABSTRACT

Omicron is the most mutated SARS-CoV-2 variant-a factor that can affect transmissibility, disease severity, and immune evasiveness. Its genomic surveillance is important in cities with millions of inhabitants and an economic center, such as Mexico City. Results. From 16 November to 31 December 2021, we observed an increase of 88% in Omicron prevalence in Mexico City. We explored the R346K substitution, prevalent in 42% of Omicron variants, known to be associated with immune escape by monoclonal antibodies. In a phylogenetic analysis, we found several independent exchanges between Mexico and the world, and there was an event followed by local transmission that gave rise to most of the Omicron diversity in Mexico City. A haplotype analysis revealed that there was no association between haplotype and vaccination status. Among the 66% of patients who have been vaccinated, no reported comorbidities were associated with Omicron; the presence of odynophagia and the absence of dysgeusia were significant predictor symptoms for Omicron, and the RT-qPCR Ct values were lower for Omicron. Conclusions. Genomic surveillance is key to detecting the emergence and spread of SARS-CoV-2 variants in a timely manner, even weeks before the onset of an infection wave, and can inform public health decisions and detect the spread of any mutation that may affect therapeutic efficacy.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Cities/epidemiology , Genomics , Humans , Mexico/epidemiology , Phylogeny , SARS-CoV-2/genetics
7.
JCO Glob Oncol ; 7: 1639-1646, 2021 09.
Article in English | MEDLINE | ID: covidwho-1571950

ABSTRACT

PURPOSE: Cancer treatment during the COVID-19 pandemic represents a challenge. Hospital visits to receive treatment and interaction with health care workers (HCW) represent potential contagious events. We aimed to determine SARS-CoV-2 infection rate among patients with cancer and HCW of a chemoradiotherapy unit localized in a center designated as a COVID-19 priority facility in Mexico City. We also determined the diagnostic performance of a clinical questionnaire (CQ) as a screening tool and anti-SARS-CoV-2 antibody seroconversion rate. METHODS: HCW and patients with solid tumors attending the chemoradiotherapy unit signed informed consent. To determine SARS-CoV-2 infection rate prospectively, a nasopharyngeal swab for SARS-CoV-2 real-time quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) was performed every 2 weeks in asymptomatics. An electronic CQ interrogating COVID-19-related symptoms was sent daily. Anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies were measured at baseline and at the end of the study period. RESULTS: From June to September 2020, we included 130 asymptomatic participants, 44.6% HCW and 55.4% patients with cancer. During a median follow-up of 85 days, 634 nasopharyngeal swabs were performed. Average SARS-CoV-2 monthly incidence was 4.6% (3.15%-7.47%), and cumulative infection rate was 13.8% (18 of 130). Cases were mostly asymptomatic (66%), and no hospitalizations or deaths were recorded. The CQ as a screening tool provided a sensitivity of 27.7%, a positive predictive value of 26.3%, and a positive likelihood ratio of 12. SARS-CoV-2 IgG seroconversion rate was 27.7% among those with a positive RT-PCR. CONCLUSION: Patients with cancer on treatment can have uncomplicated COVID-19 outcomes. Biweekly RT-qPCR testing detects asymptomatic infections, prevents transmission, and should be implemented in units to increase patient safety. CQ increase RT-qPCR diagnostic yield and may prioritize testing in resource-deprived settings. Post-infection IgG seroconversion is unreliable.


Subject(s)
COVID-19 , Neoplasms , Chemoradiotherapy/adverse effects , Health Personnel , Humans , Mexico/epidemiology , Neoplasms/epidemiology , Pandemics , Prospective Studies , SARS-CoV-2
8.
Viruses ; 13(11)2021 10 29.
Article in English | MEDLINE | ID: covidwho-1488760

ABSTRACT

The SARS-CoV-2 pandemic is one of the most concerning health problems around the globe. We reported the emergence of SARS-CoV-2 variant B.1.1.519 in Mexico City. We reported the effective reproduction number (Rt) of B.1.1.519 and presented evidence of its geographical origin based on phylogenetic analysis. We also studied its evolution via haplotype analysis and identified the most recurrent haplotypes. Finally, we studied the clinical impact of B.1.1.519. The B.1.1.519 variant was predominant between November 2020 and May 2021, reaching 90% of all cases sequenced in February 2021. It is characterized by three amino acid changes in the spike protein: T478K, P681H, and T732A. Its Rt varies between 0.5 and 2.9. Its geographical origin remain to be investigated. Patients infected with variant B.1.1.519 showed a highly significant adjusted odds ratio (aOR) increase of 1.85 over non-B.1.1.519 patients for developing a severe/critical outcome (p = 0.000296, 1.33-2.6 95% CI) and a 2.35-fold increase for hospitalization (p = 0.005, 1.32-4.34 95% CI). The continuous monitoring of this and other variants will be required to control the ongoing pandemic as it evolves.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Basic Reproduction Number/statistics & numerical data , Biological Evolution , Genome, Viral , Haplotypes , Humans , Mexico/epidemiology , Mutation , Nasopharynx/virology , Phylogeny , RNA, Viral , SARS-CoV-2/classification
9.
Arch Virol ; 166(11): 3173-3177, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1375645

ABSTRACT

SARS-CoV-2 variants emerged in late 2020, and at least three variants of concern (B.1.1.7, B.1.351, and P1) have been reported by WHO. These variants have several substitutions in the spike protein that affect receptor binding; they exhibit increased transmissibility and may be associated with reduced vaccine effectiveness. In the present work, we report the identification of a potential variant of interest, harboring the mutations T478K, P681H, and T732A in the spike protein, within the newly named lineage B.1.1.519, that rapidly outcompeted the preexisting variants in Mexico and has been the dominant virus in the country during the first trimester of 2021.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , COVID-19/transmission , Genome, Viral/genetics , Humans , Mexico/epidemiology , Mutation , Phylogeny , Prevalence , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
10.
Int J Infect Dis ; 105: 83-90, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1077929

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the feasibility of saliva sampling as a non-invasive and safer tool to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to compare its reproducibility and sensitivity with nasopharyngeal swab samples (NPS). The use of sample pools was also investigated. METHODS: A total of 2107 paired samples were collected from asymptomatic healthcare and office workers in Mexico City. Sixty of these samples were also analyzed in two other independent laboratories for concordance analysis. Sample processing and analysis of virus genetic material were performed according to standard protocols described elsewhere. A pooling analysis was performed by analyzing the saliva pool and the individual pool components. RESULTS: The concordance between NPS and saliva results was 95.2% (kappa 0.727, p = 0.0001) and 97.9% without considering inconclusive results (kappa 0.852, p = 0.0001). Saliva had a lower number of inconclusive results than NPS (0.9% vs 1.9%). Furthermore, saliva showed a significantly higher concentration of both total RNA and viral copies than NPS. Comparison of our results with those of the other two laboratories showed 100% and 97% concordance. Saliva samples are stable without the use of any preservative, and a positive SARS-CoV-2 sample can be detected 5, 10, and 15 days after collection when the sample is stored at 4 °C. CONCLUSIONS: The study results indicate that saliva is as effective as NPS for the identification of SARS-CoV-2-infected asymptomatic patients. Sample pooling facilitates the analysis of a larger number of samples, with the benefit of cost reduction.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Saliva/virology , Cross-Sectional Studies , Humans , Nasopharynx/virology , Reproducibility of Results , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL